############################################################################### ## Title: Predicting and Visualizing Critical Cases in Karnataka Districts ## ## Input: distcasfat.xlsx ## ## Output: csv/critical.csv ## ## Date Modified: 3rd May 2024 ## ############################################################################### #include Libraries library(readxl) library(readr) library(ggplot2) library(plotly) library(readxl) library(gridExtra) library(grid) library(dplyr) library(lubridate) library(viridis) library(ggpubr) library(padr) library(tidyverse) library(maps) library(mapproj) # Set current working directory setwd("/opt/lampp/htdocs/covid19-data-portal/Deceased_Working/wwwdec/") ### #Read population pop<- read_excel("distcasfat.xlsx") pop1=pop[c(1:31),2] pop2=pop[c(1:31),c(5,6,7,8)] #Read all data df1<- read_csv("csv/critical/1-daystocritical.csv") df2<- read_csv("csv/critical/2-daystocritical.csv") df3<- read_csv("csv/critical/3-daystocritical.csv") df4<- read_csv("csv/critical/4-daystocritical.csv") df5<- read_csv("csv/critical/5-daystocritical.csv") df6<- read_csv("csv/critical/6-daystocritical.csv") df7<- read_csv("csv/critical/7-daystocritical.csv") df8<- read_csv("csv/critical/8-daystocritical.csv") df9<- read_csv("csv/critical/9-daystocritical.csv") df10<- read_csv("csv/critical/10-daystocritical.csv") df11<- read_csv("csv/critical/11-daystocritical.csv") df12<- read_csv("csv/critical/12-daystocritical.csv") df13<- read_csv("csv/critical/13-daystocritical.csv") df14<- read_csv("csv/critical/14-daystocritical.csv") df15<- read_csv("csv/critical/15-daystocritical.csv") df16<- read_csv("csv/critical/16-daystocritical.csv") df17<- read_csv("csv/critical/17-daystocritical.csv") df18<- read_csv("csv/critical/18-daystocritical.csv") df19<- read_csv("csv/critical/19-daystocritical.csv") df20<- read_csv("csv/critical/20-daystocritical.csv") df21<- read_csv("csv/critical/21-daystocritical.csv") df22<- read_csv("csv/critical/22-daystocritical.csv") df23<- read_csv("csv/critical/23-daystocritical.csv") df24<- read_csv("csv/critical/24-daystocritical.csv") df25<- read_csv("csv/critical/25-daystocritical.csv") df26<- read_csv("csv/critical/26-daystocritical.csv") df27<- read_csv("csv/critical/27-daystocritical.csv") df28<- read_csv("csv/critical/28-daystocritical.csv") df29<- read_csv("csv/critical/29-daystocritical.csv") df30<- read_csv("csv/critical/30-daystocritical.csv") df31<- read_csv("csv/critical/KA-daystocritical.csv") df_pre=rbind(df1,df2,df3,df4,df5,df6,df7,df8,df9,df10,df11,df12,df13,df14,df15,df16,df17,df18,df19,df20,df21,df22,df23,df24,df25,df26,df27,df28,df29,df30,df31) df=cbind(df_pre,pop1,pop2) df=df[,c(1,3,4,5,6,7,8,9,10,2,11,12,13,14)] names(df) <- c("District","Date","Current Active Cases","Growth Rate(lamda-t)","Days to 50 Active cases per million population","Days to 1000 Active cases per million population","Days to 1500 Active cases per million population","Days to 0.2% of population Active cases","Population as on 2011","Projected Population-2020 ","Population-50 per million","Population-1000 per million","Population-1500 per million","0.2% of population") #df_dist=df[-c(31),] #df_high=subset(df_dist,df_dist$`Rate(lamda-t)`>0.10 & df_dist$`Days to 50 per million cases`=="1") #Alarm<- rep("High",length(nrow(df_high))) #df_high$Alarm <-Alarm #df_medium=subset(df_dist,df_dist$`Rate(lamda-t)`<0.10 & df_dist$`Days to 50 per million cases`>="1") #Alarm<- rep("Medium",length(nrow(df_medium))) #df_medium$Alarm <-Alarm #df_low=subset(df_dist,df_dist$`Rate(lamda-t)`<0.10 & df_dist$`Days to 50 per million cases`=="---") #Alarm<- rep("Low",length(nrow(df_low))) #df_low$Alarm <-Alarm #df_dist_final=rbind(df_high,df_medium,df_low) ###save write.csv(x=df,file="csv/critical.csv",row.names = FALSE) ###try to put alarm in map