############################################################################### ## Title: Active cases data for dictrict in Karnataka ## ## Input: kadistactive.csv ## ## Output: csv/kaactivetrans.csv ## ## Date Modified: 3rd May 2024 ## ############################################################################### #include Libraries library(readxl) library(readr) library(ggplot2) library(plotly) library(readxl) library(gridExtra) library(grid) library(dplyr) library(lubridate) library(viridis) library(ggpubr) library(padr) # Set current working directory setwd("/opt/lampp/htdocs/covid19-data-portal/Deceased_Working/wwwdec/") #Read data data<- read_csv("kadistactive.csv") ###i prefer tranpose dataframe df_1=data[c(1,2),] df_1=as.data.frame(t(df_1)) df_1=df_1[-c(1),] names(df_1)=c("Date","Total Active") State<- rep("Bagalkot",length(nrow(df_1))) df_1$State <-State df_1=df_1[,c(3,1,2)] df_2=data[c(1,3),] df_2=as.data.frame(t(df_2)) df_2=df_2[-c(1),] names(df_2)=c("Date","Total Active") State<- rep("Ballari",length(nrow(df_2))) df_2$State <-State df_2=df_2[,c(3,1,2)] df_3=data[c(1,4),] df_3=as.data.frame(t(df_3)) df_3=df_3[-c(1),] names(df_3)=c("Date","Total Active") State<- rep("Belgaum",length(nrow(df_3))) df_3$State <-State df_3=df_3[,c(3,1,2)] df_4=data[c(1,5),] df_4=as.data.frame(t(df_4)) df_4=df_4[-c(1),] names(df_4)=c("Date","Total Active") State<- rep("Bengaluru Rural",length(nrow(df_4))) df_4$State <-State df_4=df_4[,c(3,1,2)] df_5=data[c(1,6),] df_5=as.data.frame(t(df_5)) df_5=df_5[-c(1),] names(df_5)=c("Date","Total Active") State<- rep("Bengaluru Urban",length(nrow(df_5))) df_5$State <-State df_5=df_5[,c(3,1,2)] df_6=data[c(1,7),] df_6=as.data.frame(t(df_6)) df_6=df_6[-c(1),] names(df_6)=c("Date","Total Active") State<- rep("Bidar",length(nrow(df_6))) df_6$State <-State df_6=df_6[,c(3,1,2)] df_7=data[c(1,8),] df_7=as.data.frame(t(df_7)) df_7=df_7[-c(1),] names(df_7)=c("Date","Total Active") State<- rep("Chamarajanagar",length(nrow(df_7))) df_7$State <-State df_7=df_7[,c(3,1,2)] df_8=data[c(1,9),] df_8=as.data.frame(t(df_8)) df_8=df_8[-c(1),] names(df_8)=c("Date","Total Active") State<- rep("Chikkaballapur",length(nrow(df_8))) df_8$State <-State df_8=df_8[,c(3,1,2)] df_9=data[c(1,10),] df_9=as.data.frame(t(df_9)) df_9=df_9[-c(1),] names(df_9)=c("Date","Total Active") State<- rep("Chikmagalur",length(nrow(df_9))) df_9$State <-State df_9=df_9[,c(3,1,2)] df_10=data[c(1,11),] df_10=as.data.frame(t(df_10)) df_10=df_10[-c(1),] names(df_10)=c("Date","Total Active") State<- rep("Chitradurga",length(nrow(df_10))) df_10$State <-State df_10=df_10[,c(3,1,2)] df_11=data[c(1,12),] df_11=as.data.frame(t(df_11)) df_11=df_11[-c(1),] names(df_11)=c("Date","Total Active") State<- rep("Dakshina Kannada",length(nrow(df_11))) df_11$State <-State df_11=df_11[,c(3,1,2)] df_12=data[c(1,13),] df_12=as.data.frame(t(df_12)) df_12=df_12[-c(1),] names(df_12)=c("Date","Total Active") State<- rep("Davanagere",length(nrow(df_12))) df_12$State <-State df_12=df_12[,c(3,1,2)] df_13=data[c(1,14),] df_13=as.data.frame(t(df_13)) df_13=df_13[-c(1),] names(df_13)=c("Date","Total Active") State<- rep("Dharwad",length(nrow(df_13))) df_13$State <-State df_13=df_13[,c(3,1,2)] df_14=data[c(1,15),] df_14=as.data.frame(t(df_14)) df_14=df_14[-c(1),] names(df_14)=c("Date","Total Active") State<- rep("Gadag",length(nrow(df_14))) df_14$State <-State df_14=df_14[,c(3,1,2)] df_15=data[c(1,16),] df_15=as.data.frame(t(df_15)) df_15=df_15[-c(1),] names(df_15)=c("Date","Total Active") State<- rep("Hassan",length(nrow(df_15))) df_15$State <-State df_15=df_15[,c(3,1,2)] df_16=data[c(1,17),] df_16=as.data.frame(t(df_16)) df_16=df_16[-c(1),] names(df_16)=c("Date","Total Active") State<- rep("Haveri",length(nrow(df_16))) df_16$State <-State df_16=df_16[,c(3,1,2)] df_17=data[c(1,18),] df_17=as.data.frame(t(df_17)) df_17=df_17[-c(1),] names(df_17)=c("Date","Total Active") State<- rep("Kalaburagi",length(nrow(df_17))) df_17$State <-State df_17=df_17[,c(3,1,2)] df_18=data[c(1,19),] df_18=as.data.frame(t(df_18)) df_18=df_18[-c(1),] names(df_18)=c("Date","Total Active") State<- rep("Kodagu",length(nrow(df_18))) df_18$State <-State df_18=df_18[,c(3,1,2)] df_19=data[c(1,20),] df_19=as.data.frame(t(df_19)) df_19=df_19[-c(1),] names(df_19)=c("Date","Total Active") State<- rep("Kolar",length(nrow(df_19))) df_19$State <-State df_19=df_19[,c(3,1,2)] df_20=data[c(1,21),] df_20=as.data.frame(t(df_20)) df_20=df_20[-c(1),] names(df_20)=c("Date","Total Active") State<- rep("Koppal",length(nrow(df_20))) df_20$State <-State df_20=df_20[,c(3,1,2)] df_21=data[c(1,22),] df_21=as.data.frame(t(df_21)) df_21=df_21[-c(1),] names(df_21)=c("Date","Total Active") State<- rep("Mandya",length(nrow(df_21))) df_21$State <-State df_21=df_21[,c(3,1,2)] df_22=data[c(1,23),] df_22=as.data.frame(t(df_22)) df_22=df_22[-c(1),] names(df_22)=c("Date","Total Active") State<- rep("Mysuru",length(nrow(df_22))) df_22$State <-State df_22=df_22[,c(3,1,2)] df_23=data[c(1,24),] df_23=as.data.frame(t(df_23)) df_23=df_23[-c(1),] names(df_23)=c("Date","Total Active") State<- rep("Raichur",length(nrow(df_23))) df_23$State <-State df_23=df_23[,c(3,1,2)] df_24=data[c(1,25),] df_24=as.data.frame(t(df_24)) df_24=df_24[-c(1),] names(df_24)=c("Date","Total Active") State<- rep("Ramanagar",length(nrow(df_24))) df_24$State <-State df_24=df_24[,c(3,1,2)] df_25=data[c(1,26),] df_25=as.data.frame(t(df_25)) df_25=df_25[-c(1),] names(df_25)=c("Date","Total Active") State<- rep("Shivamogga",length(nrow(df_25))) df_25$State <-State df_25=df_25[,c(3,1,2)] df_26=data[c(1,27),] df_26=as.data.frame(t(df_26)) df_26=df_26[-c(1),] names(df_26)=c("Date","Total Active") State<- rep("Tumakuru",length(nrow(df_26))) df_26$State <-State df_26=df_26[,c(3,1,2)] df_27=data[c(1,28),] df_27=as.data.frame(t(df_27)) df_27=df_27[-c(1),] names(df_27)=c("Date","Total Active") State<- rep("Udupi",length(nrow(df_27))) df_27$State <-State df_27=df_27[,c(3,1,2)] df_28=data[c(1,29),] df_28=as.data.frame(t(df_28)) df_28=df_28[-c(1),] names(df_28)=c("Date","Total Active") State<- rep("Uttara Kannada",length(nrow(df_28))) df_28$State <-State df_28=df_28[,c(3,1,2)] df_29=data[c(1,30),] df_29=as.data.frame(t(df_29)) df_29=df_29[-c(1),] names(df_29)=c("Date","Total Active") State<- rep("Vijayapura",length(nrow(df_29))) df_29$State <-State df_29=df_29[,c(3,1,2)] df_30=data[c(1,31),] df_30=as.data.frame(t(df_30)) df_30=df_30[-c(1),] names(df_30)=c("Date","Total Active") State<- rep("Yadgir",length(nrow(df_30))) df_30$State <-State df_30=df_30[,c(3,1,2)] df=rbind(df_1,df_2,df_3,df_4,df_5,df_6,df_7,df_8,df_9,df_10,df_11,df_12,df_13,df_14,df_15,df_16,df_17,df_18,df_19,df_20,df_21,df_22,df_23,df_24,df_25,df_26,df_27,df_28,df_29,df_30) names(df)=c("District","Date","Total Active") #Writing district data my_name_1 <- paste("kaactivetrans",sep="-") my_name_2 <- paste(my_name_1,"csv",sep=".") my_name <- paste0("csv/", my_name_2) write.csv(df, file = my_name, row.names=FALSE)