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Let G = (V (G), E(G)) be a locally finite, connected infinite graph, where V (G) is
the set of its vertices and E(G) is the set of its edges. Fix a vertex o of G as the root,
we assume that o has at least one neighbor. For any reversible Markov chain on G,
there is a stationary measure π(·) such that for any two adjacent vertices x and y,
π(x)p(x, y) = π(y)p(y, x), where p(x, y) is the transition probability of the Markov chain.
For the edge joining vertices x and y, we assign a weight

c(x, y) = π(x)p(x, y),

and call by conductances the weights of the edges. We study the biased random walks
on the rooted graph (G, o) defined as follows:
For any vertex x of G let |x| denote the graph distance between x and o. Let N :=

{1, 2, . . .} and Z+ = N ∪ {0}. For any n ∈ Z+:

BG(n) = {x ∈ V (G) : |x| ≤ n}, ∂BG(n) = {x ∈ V (G) : |x| = n}.

and call by conductances the weights of the edges. We study the biased random walks
on the rooted graph (G, o) defined as follows:
For any vertex x of G let |x| denote the graph distance between x and o. Let N :=

{1, 2, . . .} and Z+ = N ∪ {0}. For any n ∈ Z+:

BG(n) = {x ∈ V (G) : |x| ≤ n}, ∂BG(n) = {x ∈ V (G) : |x| = n}.
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On Spectral Radius of Biased Random Walks on Infinite Graphs

Let λ ∈ [0, ∞). For λ > 0, if an edge e = {x, y} is at distance n from o, i.e., min(|x|, |y|) =

n, its conductance is defined as λ−n. Denote by RWλ the nearest-neighbour random walk
(Xn)∞n=0 among such conductances and call it the λ-biased random walk. In other words,
RWλ has the following transition probabilities: for v ∼ u (i.e., if u and v are adjacent on
G),

p(v, u) := pGλ (v, u) =


1
dv

if v = o,
λ

dv+(λ−1)d−v
if u ∈ ∂BG(|v| − 1) and v 6= o,

1
dv+(λ−1)d−v

otherwise.

(0.1)

Here, dv is the degree of vertex v, and d−v , d0
v and d+

v are the numbers of edges connecting
v to ∂BG(|v| − 1), ∂BG(|v|) and ∂BG(|v|+ 1) respectively. Note that

d+
v + d0

v + d−v = dv, d−v ≥ 1, v 6= o, d−o = d0
o = 0,

and that RWλ=1 is the simple random walk (SRW) on G. When λ = 0, for v ∼ u define

p(v, u) := pGλ (v, u) =


1
dv

if v = o,
1
d−v

if u ∈ ∂BG(|v| − 1) and v 6= o d+
v = d0

v = 0,
1

dv−d−v
otherwise.

(0.2)

By Rayleigh’s monotonicity principle (see [28], p. 35), there is a critical value λc(G) ∈
(0, ∞] such that RWλ is transient for λ < λc(G) and is recurrent for λ > λc(G). Let
Mn = #(∂BG(n)) be the cardinality of ∂BG(n) for any n ∈ Z+. Define the volume growth
rate of G as

gr(G) = lim inf
n→∞

M1/n
n .

When G is a tree, λc(G) is exactly the exponential of the Hausdorff dimension of the
tree boundary, namely the branching number of the tree ([14], [22], [28]). When G is a
transitive graph, λc(G) = gr(G) (see [24] and [28]). Let

gr+(G) = lim inf
n→∞

( ∑
x∈∂BG(n−1)

d+
x

)1/n
.

Clearly gr+(G) ≥ gr(G). If G either is a tree or satisfies

lim sup
n→∞

(
max
|x|=n

d+
x

)1/n

= 1,

then gr+(G) = gr(G).
From the Nash-Williams criterion ([28] Section 2.5), it follows that for any G with

gr+(G) < ∞, RWλ is recurrent for λ > gr+(G) and thus λc(G) ≤ gr+(G). If G is
spherically symmetric then λc(G) = gr+(G) ([28] Section 3.4, Exercise 3.11).

An original motivation for introducing RWλ by Berretti and Sokal [8] was to design a
Monte-Carlo algorithm for self-avoiding walks. See [20, 32, 29] for refinements of this
idea. Since the 1980s biased random walks and biased diffusions in disordered media
have attracted much attention in mathematical and physics communities due to their
interesting phenomenology and similarities to concrete physical systems ([3, 10, 11, 17]).
In the 1990s, Lyons ([22, 23, 24]), and Lyons, Pemantle and Peres ([25, 26]) made a
fundamental advance in the study of RWλ’s. RWλ has also received attention recently,
see [6, 2, 5, 18] and the references therein. For a survey on biased random walks on
random graphs see Ben Arous and Fribergh [4].
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On Spectral Radius of Biased Random Walks on Infinite Graphs

This paper focuses on a specific properties of spectral radius of RWλ’s on non-random
infinite graphs. The uniform spanning forests of the network associated with RWλ on
the Euclidean lattices are studied in a companion paper [30]. Recently, the continuity
and analyticity of random walk quantities such as the rate of escape and the entropy
rate as functions of the transition probabilities have been studied by various authors.
See for example Erschler [12], Ledrappier [21], Erschler and Kaimanovich [13], Gilch
and Ledrappier [15], Gouëzel [16] for corresponding results of simple random walks on
hyperbolic groups and general finitely generated groups.

Let us introduce some basic notation. Write

p(n)(x, y) := p
(n)
λ (x, y) = Px(Xn = y),

where Px := PGx is the law of RWλ starting at x. The Green function is given by

G(x, y | z) := Gλ(x, y | z) =

∞∑
n=0

p(n)(x, y)zn, x, y ∈ V (G), z ∈ C, |z| < RG ,

where RG = RG(λ) = RG(λ, x, y) is its convergence radius. Note that

RG = RG(λ) =
1

lim supn→∞
n
√
p(n)(x, y)

is independent of x, y when RWλ is irreducible, i.e., λ > 0. Call

ρλ = ρ(λ) =
1

RG
= lim sup

n→∞
p(n)(x, x)1/n = lim sup

n→∞
p(n)(o, o)1/n

the spectral radius of RWλ.

We are ready to state our main results. The proofs will be presented in Section 1 and
2.

Theorem 0.1. Let G be a locally finite, connected infinite graph.

(i) The spectral radius ρλ is continuous in λ ∈ (0,∞), and ρ(λc) = 1.

(ii) If the limit of ρλ continuous at 0, then there are no adjacent vertices in ∂BG(n) for
any n ∈ N, and dv − d−v ≥ 1 for any vertex v.

Conversely, on any infinite graph G, if for any n ∈ N there are no adjacent vertices in
∂BG(n), and if there exists δ > 0 such that dv − d−v ≥ δdv for any vertex v, then ρλ is
continuous at 0.

Let d ∈ N, d ≥ 2, and Gd denotes the set of all d-regular infinite connected graphs, Td
denotes d-regular trees.

Theorem 0.2. Let G ∈ Gd, and λ ∈ (0, λc(Td) = d− 1).

(i) We have

ρG(λ) ≥ ρTd
(λ) =

2
√

(d− 1)λ

d− 1 + λ
.

(ii) Assume G is transitive. Then

ρG(λ) = ρTd
(λ) if and only if G is isomorphic to Td.

In the case λ = 1, Theorem 0.2 follows from Kesten [19, Theorem 2] (see also [33,
p. 122 Corollary 11.7] and [28, Theorem 6.11]). Furthermore, Abért, Glasner and
Virág [1] provided a quantitative strengthening of Kesten’s theorem and extended it to
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On Spectral Radius of Biased Random Walks on Infinite Graphs

unimodular random rooted regular graphs. See also Lyons and Peres [27] for relation
between the equality ρG(1) = ρTd(1) and the frequency of times spent by simple random
walk in a nontrivial cycle on general regular graphs.

When emphasizing that a function g(·) depends on the underlying graph G, we will
use gG(·) or gG(·) to replace g(·).

1 Proofs of Theorem 0.1

For any vertex set A, let

τA = inf{n ≥ 0 | Xn ∈ A}, τ+
A = inf{n ≥ 1 | Xn ∈ A}.

When A = {y}, write τy = τ{y}, τ
+
y = τ+

{y}. Put

f (n)(x, y) := f
(n)
λ (x, y) = Px(τ+

y = n), (1.1)

U(x, y | z) := U(x, y | z) =

∞∑
n=1

f (n)(x, y)zn, x, y ∈ V (G), z ∈ C, |z| < RU ,(1.2)

where RU = RU (λ) = RU (λ, x, y) is the convergence radius of U , which is also indepen-
dent of x, y for λ > 0. When λ = 0, RU (0) =∞.

1.1 Proof of Theorem 0.1 part (i)

Proof. It suffices to verify that the convergence radius RG(λ) is continuous in λ ∈ (0, ∞).
This is done in two steps.

Step 1. For any sequence {λk}k≥1 ⊂ (0, λc(G)] converging to a limit λ0 ∈ (0, λc(G)],
we claim that

lim sup
k→∞

RG(λk) ≤ RG(λ0) ≤ lim inf
k→∞

RG(λk).

For any n ∈ Z+, let

Πn = {paths γ in G staring and ending at o with length n},

P(γ, λ) =
n−1∏
i=0

pλ(wi, wi+1), γ = w0w1 · · ·wn ∈ Πn .

Note that for 0 < λ1 ≤ λ2 <∞ and v ∼ u we have

λ1

λ2
≤ pλ1

(v, u)

pλ2(v, u)
≤ λ2

λ1
. (1.3)

Thus, for any 1 > δ > 0, there is a constant ε > 0 such that (1− δ)pλ0
(v, u) ≤ pλ(v, u) ≤

(1+δ)pλ0
(v, u) for λ ∈ (λ0−ε, λ0+ε). Consequently, we have (1−δ)nP(γ, λ0) ≤ P(γ, λ) ≤

(1 + δ)nP(γ, λ0) for γ ∈ Πn and

p
(n)
λ (o, o) =

∑
γ∈Πn

P(γ, λ) ≥
∑
γ∈Πn

(1− δ)nP(γ, λ0) = (1− δ)np(n)
λ0

(o, o),

p
(n)
λ (o, o) =

∑
γ∈Πn

P(γ, λ) ≤
∑
γ∈Πn

(1 + δ)nP(γ, λ0) = (1 + δ)np
(n)
λ0

(o, o).

Therefore we have for k large enough,

Gλk
(o, o | z) =

∞∑
n=0

p
(n)
λk

(o, o)zn ≥
∞∑
n=0

p
(n)
λ0

(o, o) ((1− δ)z)n > −∞,
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Gλk
(o, o | z) =

∞∑
n=0

p
(n)
λk

(o, o)zn ≤
∞∑
n=0

p
(n)
λ0

(o, o) ((1 + δ)z)
n
<∞,

provided (1 + δ)z < RG(λ0). Since δ is arbitrary, we have that lim infk→∞RG(λk) ≥
RG(λ0) ≥ lim supk→∞RG(λk).

Step 2. It remains to prove RG(λc) = 1. Suppose RG(λc) > 1, then for λ > λc and
z > 1 with 1 < λz

λc
< RG(λc), we would have from (1.3) that

∞∑
n=0

p
(n)
λ (o, o)zn ≤

∞∑
n=0

p
(n)
λc

(o, o)

(
λz

λc

)n
<∞.

Then RG(λ) > 1. This contradicts to the fact that RWλ is recurrent for λ > λc.

1.2 Proof of Theorem 0.1 part (ii)

We split the proof of (ii) into three steps.

Step 1. For any given locally finite, connected infinite graph G, such that ∂BG(n0)

contains adjacent vertices for some n0 we prove that ρλ is not continuous at 0.
Let u and v be adjacent vertices in ∂BG(n0). Let e = {u, v}. For RWλ (with λ > 0,

starting at u) to return to u, it suffices to walk 2n steps between u and v. Accordingly,

p
(2n)
λ (u, u) ≥

(
1

du + (λ− 1)d−u

)n(
1

dv + (λ− 1)d−v

)n
. (1.4)

So for any λ > 0,

ρλ ≥ lim sup
n→∞

{
p

(2n)
λ (u, u)

} 1
2n ≥ 1

{[du + (λ− 1)d−u ] [dv + (λ− 1)d−v ]}1/2
> 0.

Letting 0 < λ→ 0, we immediately get

lim inf
λ→0+

ρλ ≥
1

[(du − d−u )(dv − d−v )]1/2
> 0 = ρ0.

Step 2.Assume that there is a vertex v such that dv − d−v = 0. Similar to the arguments
in the previous step, we have for any n,

p
(2n)
λ (u, u) ≥

( 1

du + (λ− 1)d−u

)n( 1

dv

)n
.

Then for any λ > 0,

ρλ ≥
( 1

dv(du + (λ− 1)d−u )

)1/2

> 0.

Hence ρλ is not continuous at 0.
Step 3. Assume that there are no adjacent vertices in ∂BG(n) for any n ∈ N, and there
exists δ > 0 such that dv − d−v ≥ δdv for any vertex v. Then for any λ > 0 and the
RWλ (Xn)∞n=0, the following holds almost surely:

|Xn+1| − |Xn| ∈ {+1,−1}, ∀n ∈ Z+. (1.5)

When X0 = o, the walk (Xn)∞n=0 takes an even number (say, 2m, for some m ≥ 1) of steps
to return to o: Among these 2m steps, m steps are upward and the other m steps are
downward. When v ∼ u and |u| = |v| − 1, we have

pλ(v, u) =
λ

dv + (λ− 1)d−v
≤ λ

dv − d−v
≤ λd−1

v δ−1, λ > 0.
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When v ∼ u and |u| = |v| + 1, we have pλ(v, u) ≤ d−1
v δ−1. Hence for any path γ =

w0w1 · · ·w2n ∈ Π2n,

P(γ, λ) =

2n−1∏
i=0

pλ(wi, wi+1) ≤ λnδ−2nP(γ, 1), λ > 0,

which implies that for any λ > 0,

p
(2n)
λ (o, o) =

∑
γ∈Π2n

P(γ, λ) ≤ λnδ−2n
∑
γ∈Π2n

P(γ, 1) ≤ λnδ−2np
(2n)
1 (o, o).

Hence

ρλ = lim sup
n→∞

{
p

(2n)
λ (o, o)

} 1
2n ≤ δ−1ρ1λ

1/2,

proving that limλ→0+ ρλ = 0 = ρ0.

2 Proof of Theorem 0.2

We start with the lemma, which will be used in the proof of Theorem 0.2.

Lemma 2.1. [31] For the d-regular tree Td, the following holds:

ρTd
(λ) =

2
√

(d− 1)λ

d− 1 + λ
, λ ∈ [0, λc(Td)] = [0, d− 1],

and for λ ∈ (0, ∞) and n→∞,

f
(2n)
λ (o, o) ∼ 1√

π

(
2
√

(d− 1)λ

d− 1 + λ

)2n

n−3/2. (2.1)

Moreover,

p
(2n)
λ (o, o) ∼

{
(d−1−λ)2

16(πλ)1/2(d−1)3/2
ρTd

(λ)2nn−3/2 if λ ∈ (0, d− 1),
1√
πn

if λ = d− 1.
(2.2)

Now we are ready to give the proof of Theorem 0.2.

Proof of Theorem 0.2. (i) Fix λ ∈ (0, λc(Td)). Define g = gλ : Z+ → R by

g(n) = gλ(n) :=

(
1 +

d− 1− λ
d− 1 + λ

n

)
((d− 1)/λ)−n/2,

and f = fλ : G→ R by

f(x) := fλ(x) = g(|x|), ∀x ∈ V (G). (2.3)

It is easy to see that g(0) = 1 and g(1) =
(

2(d−1)
d−1+λ

)
((d − 1)/λ)−1/2. Set a = λ

d−1 , hence

0 < a < 1 and g(1) = 2a1/2

1+a < 1 = g(0). For n ∈ Z,

g(n+ 1)

g(n)
=

(1 + 1−a
1+a (n+ 1))a

n+1
2

(1 + 1−a
1+an)a

n
2

=
n+ 2− na

n+ 1− (n− 1)a
a

1
2

= (1 +
1− a

2 + (n− 1)(1− a)
)a

1
2 .

ECP 0 (2020), paper 0.
Page 6/11

https://www.imstat.org/ecp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


On Spectral Radius of Biased Random Walks on Infinite Graphs

It is easy to see that 1−a
2+(n−1)(1−a) is strictly decreasing on Z. So g(n+1)

g(n) obtains the

maximum value (3−a)a1/2

2 when n = 1. For Consider function k(a) =
(

(3−a)a1/2

2

)2

=

(3−a)2a2

4 , (0 < a < 1), we can check that k(a) in strictly increasing on 0 < a < 1 and
k(a) < 1. So g is strictly decreasing on Z+. Recall p(x, y) from (0.2). For any h : G→ R,
let

Ph(x) :=
∑
y∼x

p(x, y)h(y), x ∈ V (G). (2.4)

Then Pf(o) = ρTd
(λ)f(o), and for x 6= o,

Pf(x) =
d+
x g(|x|+ 1) + d0

xg(|x|) + λd−x g(|x| − 1)

d+
x + d0

x + λd−x

≥ (d+
x + d0

x)g(|x|+ 1) + λd−x g(|x| − 1)

d+
x + d0

x + λd−x
.

Since g(|x| − 1) ≥ g(|x|+ 1) and d−x ≥ 1 (so d+
x + d0

x ≤ d− 1), this leads to:

Pf(x) ≥ (d− 1)g(|x|+ 1) + λg(|x| − 1)

d− 1 + λ
= ρTd

(λ)f(x), x 6= o. (2.5)

For further use, we notice that for x 6= o, if Pf(x) = ρTd
(λ)f(x), then d−x = 1, d0

x = 0 and
d+
x = d− 1.

For any n ∈ N, put fn := f IBG(n). For x ∈ BG(n),

Pfn(x) = Pf(x)− d+
x g(n+ 1)

d+
x + d0

x + λd−x
I{|x|=n}.

Define µ as follows: µ(o) = do and µ(x) = (d+
x + d0

x + λd−x )λ−|x| for x 6= o. Let Mn :=

|∂BG(n)| as before. Denote by ( · , · ) the inner product of L2(G,µ). Then

(Pfn, fn) =
∑

x∈BG(n)

Pf(x)f(x)µ(x)−
∑

x∈∂BG(n)

d+
x g(n+ 1)

d+
x + d0

x + λd−x
f(x)µ(x) .

For the sum
∑
x∈BG(n) on the right-hand side, we observe that by (2.5), for x ∈ BG(n),

Pf(x) ≥ ρTd
(λ)f(x) = ρTd

(λ)fn(x). For the sum
∑
x∈∂BG(n), we note that for x ∈ ∂BG(n),

since d+
x ≤ d− 1 and f(x) = g(n), we have µ(x)

d+x +d0x+λd−x
= λ−n. Accordingly,

(Pfn, fn) ≥ ρTd
(λ)(fn, fn)− (d− 1)Mn g(n)g(n+ 1)λ−n ≥ ρTd

(λ)(fn, fn)− (d− 1)Mn g(n)2λ−n,

which implies that

ρG(λ) = sup
h∈L2(G,µ)\{0}

(Ph, h)

(h, h)
≥ (Pfn, fn)

(fn, fn)
≥ ρTd

(λ)− (d− 1)Mn g(n)2λ−n

(fn, fn)
.

Observe that

(fn, fn) =

n∑
k=0

∑
x∈∂BG(k)

g(k)2µ(x) =

n∑
k=0

∑
x∈∂BG(k)

g(k)2 (d+
x + d0

x + λd−x )λ−|x|

≥ (λ ∧ 1)d

n∑
k=0

Mk g(k)2 λ−k.
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Hence

ρG(λ) ≥ ρTd
(λ)− d− 1

d(λ ∧ 1)

Mn g(n)2 λ−n∑n
k=0Mk g(k)2 λ−k

.

It remains to prove that

lim
n→∞

Mn g(n)2 λ−n∑n
k=0Mk g(k)2 λ−k

= 0.

For k ≤ n,

Mn g(n)2 λ−n ≤Mk (d− 1)n−kg(n)2 λ−n = Mk g(k)2 λ−k
(

(d− 1− λ)n+ d− 1 + λ

(d− 1− λ)k + d− 1 + λ

)2

,

which implies that∑n
k=0Mk g(k)2 λ−k

Mn g(n)2 λ−n
≥

n∑
k=0

(
(d− 1− λ)k + d− 1 + λ

(d− 1− λ)n+ d− 1 + λ

)2

.

Since λ ≤ d− 1, the sum on the right-hand side goes to infinity as n→∞.

(ii) For d = 2, Gd = {T2}, the result holds trivially. So we assume d ≥ 3. It suffices to
prove that for any transitive G ∈ Gd with the minimal cycle length ` ≥ 3,

ρG(λ) > ρTd
(λ), ∀λ ∈ (0, λc(Td)). (2.6)

Step 1. λc(G) < λc(Td) = d− 1.

Let Γd,` := 〈a1, . . . , ad−2, b | a2
i = 1, b` = 1〉 be a finitely-presented group with gen-

erating set S = {a1, . . . , ad−2, b, b
−1}, and Xd,` := (Z2 ∗ · · · ∗ Z2) (d − 2 folds ) ∗ Z` the

corresponding Cayley graph; then the transitive graph G is covered byXd,` (see Theorem
11.6 of [33]). From this result, we obtain

λc(G) = gr(G) ≤ gr(Xd,`).

For z ≥ 0, define

k`(z) =

{
2z + 2z2 + · · ·+ 2z

`−1
2 , if ` is odd,

2z + 2z2 + · · ·+ 2z
`−2
2 + z

`
2 , if ` is even;

h`(z) =
(d− 2)z

1 + z
+

k`(z)

1 + k`(z)
.

Then gr(Xd,`) = 1
z∗

where z∗ is the unique positive number satisfying h`(z∗) = 1 (see

[9] p. 28). Since j` :=
k`( 1

d−1 )

1+k`( 1
d−1 )

is strictly increasing in `, and limr→∞ jr = 2
d , we have

j` <
2
d , which implies h`(

1
d−1 ) < 1. Notice that h`(z) is strictly increasing in z ≥ 0. So

z∗ >
1
d−1 and gr(Xd,`) = 1

z∗
< d− 1, which implies λc(G) < d− 1.

Step 2. Fix λ ∈ (0, d− 1). Let as before µ(o) := do and µ(x) := (d+
x + d0

x + λd−x )λ−|x|

if x 6= o. Let f : G→ R be the function defined in (2.3). Then f ∈ L2(G, µ).

Since G is transitive, λc(G) = gr(G) = limn→∞M
1/n
n . By Step 1, for any ε ∈ (0, d −

1− λc(G)), there is a constant cε > 0 such that

Mn ≤ cε (λc(G) + ε)n, ∀n ≥ 0.
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Thus

∑
x∈V (G)

f2(x)µ(x) =
∑

x∈V (G)

(
1 +

d− 1− λ
d− 1 + λ

|x|
)2(

λ

d− 1

)|x| (
d+
x + d0

x + λd−x
)
λ−|x|

≤ (λ ∨ 1)d

∞∑
n=0

Mn

(
1 +

d− 1− λ
d− 1 + λ

n

)2(
1

d− 1

)n
≤ (λ ∨ 1)dcε

∞∑
n=0

(
λc(G) + ε

d− 1

)n(
1 +

d− 1− λ
d− 1 + λ

n

)2

<∞.

Step 3. (2.6) is true.
Let λ ∈ (0, λc(Td)). We have noticed in the proof of (i) that Pf(o) = ρTd

(λ)f(o) and
that for x 6= o,

Pf(x) ≥ ρTd
(λ)f(x), and “ = ” implies d−x = 1, d0

x = 0, d+
x = d− 1.

Since the transitive G has the minimal cycle length ` ≥ 3, we cannot have d−x = 1, d0
x = 0,

d+
x = d − 1 for any x ∈ V (G) \ {o}. Note that f(·) and µ(·) are strictly positive on G.

Hence

(Pf, f) =
∑

x∈V (G)

Pf(x)f(x)µ(x) >
∑

x∈V (G)

ρTd
(λ)f2(x)µ(x) = ρTd

(λ)(f, f).

By Step 2, f ∈ L2(G, µ), which implies that

ρG(λ) = sup
h∈L2(G,µ)\{0}

(Ph, h)

(h, h)
≥ (Pf, f)

(f, f)
> ρTd

(λ),

proving (2.6).

Since for some G ∈ Gd that are not trees, one may have gr(G) = d− 1, in general it is
not true that f ∈ L2(G, µ) for λ ∈ (0, d− 1). However, for any transitive graph G ∈ Gd
that is not isomorphic to Td, we have gr(G) < d− 1, which ensures f ∈ L2(G,µ) in the
proof of Theorem 0.2 (ii).

So far we have finished proving Theorem 0.2.
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